

5.NBT. 3	B	Decimal Fractions and Place Value Patterns		Days: 3
		Lesson 5: Lesson 6: 1 Day Math	Name decimal fractions in expanded, unit, and word forms by applying place value reasoning. Compare decimal fractions to the thousandths using like units and express comparisons with $>,<,=$. Decimal Garden (pg. 44)	This task is from Georgia and focuses on 5.NBT. 3 .
By the end of Topic B, your students should be able to: - Read, write, and compare decimals to the thousandths				
Snapshot Assessment for 5.NBT. 3				
Write the number name and expanded form for the decimal: (DOK 1) 24.561				
Expanded form:				
Number name:				
$\begin{aligned} & \text { Compare using }>,<, \text { or }= \\ & .50 \ldots .05 \end{aligned}$				
Explain your reasoning using words, numbers, and/or pictures.				
5.NBT. 4	C	Place Value and Rounding Decimal Fractions		Days: 1
		Lesson 7: Lesson 8:	Round a given decimal to any place using place value understanding and the vertical number line. Round a given decimal to any place using place value understanding and the vertical number line. Use Lesson 7 Sprint.	Optional Lesson 7, it is repetitive of Lesson 8. Do Sprint from Lesson 7.

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic C, your students should be able to:

- Use a vertical number line to round a decimal to any place value to explain their thinking

Snapshot Assessment for 5.NBT. 4

Use a vertical number line to round the following number to the place of the underlined digit. (DOK 1)
2. 39

Doug wanted to buy snacks at the movie theater. The total was $\$ 34.97$. About how much money will he need to cover the cost? Round to the nearest dollar. (DOK 1)

3 Days for Remediation, Enrichment, Mid-Module Assessment

Mid-Module Assessment Word Document

Suggested Tasks:

- Reasonable Rounding- Georgia Math, page 53, focuses on 5.NBT.3, 5.NBT.4
- For Remediation: Decimals Task
- For Enrichment: Check This

$\begin{aligned} & \text { 5.NBT. } 2 \\ & \text { 5.NBT. } 3 \\ & \text { 5.NBT. } 7 \end{aligned}$	D	Adding and Subtracting Decimals Introduction Task: Coins Worth.		Days: 2 Before Lesson 9, introduce adding decimals with task Coins Worth.
		Lesson 9:	Add decimals using place value strategies and relate those strategies to a written method.	
		Lesson 10:	Subtract decimals using place value strategies and relate those strategies to a written method.	

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic D, your students should be able to:

- Add and subtract decimals to the hundredths
- Use models or drawings to explain my thinking

5.NBT. 7 Snapshot Assessment

Sarah has 4 weeks to earn $\$ 18$, so she can buy a new game. Below is a list of jobs that she can choose from. She only has enough time to do 1 job per week. Explain two different combinations of jobs Sarah could do to earn at least $\$ 18$. Use words, numbers, and pictures to explain your thinking. (DOK 3)

Jobs	Money Per Week	
Mowing Lawns	$\$ 3.45$	
Planting Trees	$\$ 5.75$	
Shoveling Topsoil	$\$ 4.65$	
3 Days for Re-Assessment,		

Total Instructional Days: 15
Links Used:
Module Assessments: https://www.engageny.org/resource/grade-5-mathematics-module-1
"Decimal Garden" Task, page 44: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5th-Math-Unit-2.pdf
"Reasonable Rounding" Task, page 53: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5th-Math-Unit2.pdf
"Decimals" Task: http://www.fwps.org/tfl/wp-content/uploads/sites/3/2014/06/Decimals-Task-and-Rubric-Module1.pdf?697a0d
"Check This" Task: http://www.fwps.org/tfl/wp-content/uploads/sites/3/2014/06/Check-This-Task-and-Rubric-Module1.pdf?697a0d
"Coins Worth" Task: http://robertkaplinsky.com/work/how-much-money-are-the-coins-worth/

(cc) $\mathrm{Er}^{\mathrm{E}-\mathrm{NC}}$

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Standards	Topic and Objectives		
5.NBT.1	A	Mental Strategies for Multi-Digit Whole Number Multiplication Lesson 1: Multiply multi-digit whole numbers and multiples of 10 using place value patterns and the distributive and associative properties. 5.NBT.2	Lesson 2: Estimate multi-digit products by rounding factors to a basic fact and using place value patterns.

By the end of Topic A, your students should be able to:

- Multiply whole numbers by multiples of 10
- Know and use distributive and associative properties of multiplication
- Estimate by rounding to multiple of 10

	B	The Standard Algorithm for Multi-Digit Whole Number Multiplication **Lesson 3: Write and interpret numerical expressions and compare expressions using a visual model. Lesson 4: Convert numerical expressions into unit form as a mental strategy for multi-digit multiplication. Lesson 5: Connect visual models and the distributive property to partial products of the standard algorithm without renaming. Lesson 6: Connect area diagrams and the distributive property to partial products of the standard algorithm without renaming. Lesson 7: Connect area diagrams and the distributive property to partial products of the standard algorithm with renaming. Lesson 8: Fluently multiply multi-digit whole numbers using the standard algorithm and using estimation to check for reasonableness of the product. Lesson 9: Fluently multiply multi-digit whole numbers using the standard algorithm to solve multistep word problems.	Days: 6 **Before teaching Lesson 3, review order of operations with students. Extension Lesson 4, it uses mental strategy for multidigit multiplication.
By the end of Topic B, your students should be able to: - Use parenthesis and brackets to evaluate expressions - Use area diagrams and partial products to connect with the standard algorithm for multiplication with and without renaming			

[^0]- Multiply using the standard algorithm and use estimation to check reasonableness of product
- Use the standard algorithm to solve multi-step word problems

Snapshot Assessment for 5.OA. 1

Evaluate the expression. (DOK 1)
$136 \div(11-7)$
When evaluating the expressions below, which expression has a value of 6? Explain your reasoning. (DOK 1)
$24-6 \div 3$
or
$8-6 \div 3$

Snapshot Assessment for 5.OA. 2

Snapshot Assessment - Module 2
Snapshot Assessment for 5.NBT. 5
Find the product using the standard algorithm. Show your work below. (DOK 1)
$7,932 \times 378=$
New button-up shirts at Costco are on sale for $\$ 23$ each. At the end of the day, Costco sold 437 shirts. How much money did Costco make selling shirts? (DOK 1)

5.NBT.7	C	Decimal Multi-Digit Multiplication Lesson 10: Multiply decimal fractions with tenths by multi-digit whole numbers using place value 5.OA.1	
understanding to record partial products.			
5.OA.2			
Lesson 11:Multiply decimal fractions by multi-digit whole numbers through conversion to a whole			
5umber problem and reasoning about the placement of the decimal.			
Lesson 12: Reason about the product of a whole number and a decimal with hundredths using			
place value understanding and estimation.			

Days: 3

For Remediation: Lesson 11 from Module 1 - Multiply a decimal fraction by single-
digit whole numbers

By the end of Topic C, your students should be able to:

- Multiply decimal fractions with tenths by multi-digit whole numbers
- Use estimation to justify the reasonableness of your product

Snapshot Assessment for 5.NBT. 7

Find the product. Show your work below. (DOK 1)

(c) EY - Nc

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

$1.9 \times 26=$

Xander claims that for any decimal multiplied by $0.5, \mathrm{n}$ will always be less than 0.5 . (DOK 3)
$0.5 \times$ \qquad = n
\square Write one decimal that supports his claim.
\square Write one decimal that refutes (does not support) his claim.

5.NBT.5	D	Measurement Word Problems with Whole Number and Decimal Multiplication	
5.NBT.7		Lesson 13: Use whole number multiplication to express equivalent measurements.	
5.MD.1		Lesson 14: Use decimal multiplication to express equivalent measurements.	
5.NBT.1		Lesson 15: Solve two-step word problems involving measurement and multi-digit multiplication.	
5.NBT.2			

By the end of Topic D, your students should be able to:

- Convert measurements within the same measurement system
- Use whole number and decimal multiplication to express equivalent measurements (for example: $1.37 \mathrm{~m}=137 \mathrm{~cm}$)

Snapshot Assessment for 5.NBT. 7

$3.7 \mathrm{~kg}=$ \qquad g2

Rich Task for 5.NBT. 7 and 5.MD. 1

A black lab gave birth to 3 puppies. The first puppy weighed 6.1 kg , the second weighed 308 g less than the first, and the third puppy weighed 0.4 kg more than the second puppy. The mother weighed 6 times the total weight of her litter (3 puppies). What was her weight in kilograms?

3 Days for Remediation, Enrichment, Mid-Module Assessment

Mid Module Assessment Word Document

SBAC Released Item

Which equation has the same unknown value as $228 \div 12=\square$?
A. $228 \times \square=12$
B. $12 \times \square=228$
C. $\square \div 12=228$
D. $\square \div 228=12$

Rubric: (1 point) The student selects the correct option (e.g., B).

5.NBT.1 5.NBT.2	E	Mental Strategies for Multi-Digit Whole Number Division Lesson 16: Use divide by 10 patterns for multi-digit whole number division.	Days: $\mathbf{2}$

(cc) $\mathrm{EY}^{2}-\mathrm{NC}$

By the end of Topic E , your students should be able to:

- Divide by patterns of 10 (example:150/10 = 15)
- Approximate quotients with two-digit divisors

Snapshot Assessment for 5.NBT. 2

Divide. Show your work below.
(DOK 1)
$204 \div 20$
Snapshot Assessment 5.NBT.6- do problem \#4

5.NBT.6 \quad F \quad Partial Quotients and Multi-Digit Whole Number Division

Lesson 19: Divide two- and three-digit dividends by multiples of 10 with single-digit quotients and make connections to a written method.
Lesson 20: Divide two- and three-digit dividends by two-digit divisors with single-digit quotients and make connections to a written method.
Lesson 21 : Divide two- and three-digit dividends by two-digit divisors with single-digit quotients and make connections to a written method.
Lesson 22: Divide three- and four-digit dividends by two-digit divisors resulting in two- and threedigit quotients, reasoning about the decomposition of successive remainders in each place value.
Lesson 23: Divide three- and four-digit dividends by two-digit divisors resulting in two- and threedigit quotients, reasoning about the decomposition of successive remainders in each place value.

Days: 4

Combine Lessons 22 and

23, Use concept development problems \#1 and 2 from Lesson 22 and problems \#3 and 4 from 23. Use problem set and exit ticket from Lesson 23.

Combine Lessons 22 \& 23

By the end of Topic F, your students should be able to:

- Divide up to four-digit dividends by up to two-digit divisors
- Interpret remainders

Snapshot Assessment for 5.NBT. 6

Michael has 219 football cards. Each page of his football card album holds 15 cards. How many pages does Michael need to hold all of his football cards? (DOK 1)

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

The community garden has an area of 1,872 square feet. The length of one side is 24 feet. The community pool also has an area of 1,872 square feet and the length of one side of the pool is 52 feet. Does the community's pool or garden have a greater width? Explain how you know.
(DOK 2)

5.NBT.2	G.NBT.7	Partial Quotients and Multi-Digit Decimal Division Use Sprint from Module 1, Lesson 13. Lesson 24: Divide decimal dividends by multiples of 10, reasoning about the placement of the decimal point and making connections to a written method. Lesson 25: Use basic facts to approximate decimal quotients with two-digit divisors, reasoning about the placement of the decimal point. Lesson 26: Divide decimal dividends by two-digit divisors, estimating quotients, reasoning about the placement of the decimal point, and making connections to a written method. Lesson 27: Divide decimal dividends by two-digit divisors, estimating quotients, reasoning about the placement of the decimal point, and making connections to a written method.	Days: 2 Lessons 26 can be used for additional practice/re- teaching.
foncept development.			

By the end of Topic G, your students should be able to:

- Divide by multiples of 10
- Divide decimals to hundredths
- Explain reasoning on where the decimal point is placed

Snapshot Assessment for 5.NBT. 7
Dividing with Decimals Task

SBAC Released Item:

Example Stem: Which expression is equal to $16.25 \div 2.5$?
A. $1.625 \div 25$
B. $16.25 \div 25$
C. $162.5 \div 25$
D. $1625 \div 25$

Rubric: (1 point) The student selects the correct option (e.g., C).

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

5.NBT.6	H	Measurement Word Problems with Multi-Digit Division Lesson 27: Divide decimal dividends by two-digit divisors, estimating quotients, reasoning about the placement of the decimal point, and making connections to a written method. Lesson 28: Solve division word problems involving multi-digit division with group size unknown and the number of groups unknown.	Days: 1 Add problem set from Lesson 27 to Lesson 28 so students have one problem set to use during the lesson and one for independent practice. Optional Lesson 29 and is
Lesson 29: Solve division word problems involving multi-digit division with group size unknown and			
the number of groups unknown.			
repetitive of Lesson 28. Can			
be used for spiral review			

later in the year.

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Standards	Topic and Objectives			
4.NF. 1 4.NF.3c 4.NF.3d	A	Equivalen Lesson 1: Lesson 2:	tions Make equivalent fractions with the number line, the area model, and numbers. Make equivalent fractions with sums of fractions with like denominators.	Days: 2 Review of $4^{\text {th }}$ grade standards.

By the end of Topic A, your students should be able to:

- Create equivalent fractions
- Add with like-denominators

SBAC Released Items

4.NF. 1

Example Stem: Figure A has $\frac{2}{3}$ of its whole shaded gray.

Figure A
Decide whether each fraction is equal to $\frac{2}{3}$. Select Yes or No for each fraction.

	Yes	No
$\frac{4}{6}$		
$\frac{1}{2}$		
$\frac{8}{12}$		

Click in the chart to match each fraction to the model that shows an equivalent fraction.

5.NF. 1

 B Making Like Units Pictorially
5.NF. 2

Lesson 3: \quad Add fractions with unlike units using the strategy of creating equivalent fractions.
Lesson 4: Add fractions with sums between 1 and 2.

Lesson 5: \quad| Subtract fractions with unlike units using the strategy of creating equivalent |
| :--- |
| fractions. |

Lesson 6: \quad| Subtract fractions from numbers between 1 and 2. |
| :--- |

Lesson 7:

By the end of Topic B, your students should be able to:

- Add and subtract fractions with unlike denominators by finding simple equivalent fractions
- Solve word problems involving addition and subtraction of fractions with unlike denominators

Snapshot Assessment for 5.NF. 1 - Do problems 1-3 only

Snapshot Assessment - Part 2 for 5.NF. 2 - Do problems 1 and 2 only

SBAC Released Items:

TM1a

Stimulus: The student is presented with an addition problem
involving fractions with unlike denominators.
Example Stem 1: Enter the sum. $\frac{2}{10}+\frac{30}{100}$
Example Stem 2: Enter the sum. $\frac{8}{6}+\frac{3}{12}$
Example Stem 3: Enter the sum. $\frac{3}{4}+1 \frac{3}{5}$

TM1b
Stimulus: The student is presented with a subtraction problem
invol ving fractions with unlike denominators.
Example Stem 1: Enter the difference. $\frac{6}{10}-\frac{20}{100}$
Example Stem 2: Enter the difference. $\frac{15}{12}-\frac{3}{4}$
Example Stem 3: Enter the difference. $2 \frac{7}{9}-\frac{3}{8}$

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Example Stem: Which set of steps shows a correct strategy and solution for subtracting $1 \frac{3}{4}-\frac{1}{3}$?
A. $\frac{3}{4 \times 3}-\frac{1}{3 \times 4}$
B. $\frac{7}{4 \times 3}-\frac{1}{3 \times 4}$
C. $\frac{7 \times 3}{4 \times 3}-\frac{1 \times 4}{3 \times 4}$
D. $\frac{7 \times 3}{4 \times 3}-\frac{1 \times 3}{3 \times 4}$
$=\frac{3}{12}-\frac{1}{12}$
$=\frac{7}{12}-\frac{1}{12}$
$=\frac{21}{12}-\frac{4}{12}$
$=\frac{21}{12}-\frac{3}{12}$
$=\frac{2}{12}=\frac{1}{6}$
$=\frac{6}{12}=\frac{1}{2}$
$=\frac{17}{12}=1 \frac{5}{12}$
$=\frac{18}{12}=1 \frac{6}{12}=1 \frac{1}{2}$

2 Days for Assessment, Remediation and Enrichment

Mid-Module Assessment Word Document

$\begin{aligned} & \text { 5.NF. } 1 \\ & \text { 5.NF. } 2 \end{aligned}$	C	Making Like Units Numerically		Days: 5 Insert Lesson 14 and 15 Sprints to these lessons.
		Lesson 8:	Add fractions to and subtract fractions from whole numbers using equivalence and the number line as strategies.	
		Lesson 9:	Add fractions making like units numerically.	
		Lesson 10:	Add fractions with sums greater than 2.	
		Lesson 11:	Subtract fractions making like units numerically.	
		Lesson 12:	Subtract fractions greater than or equal to one.	

By the end of Topic C, your students should be able to:

- Add and subtract fractions and mixed numbers with unlike denominators by finding equivalent fractions
- Solve word problems by adding and subtracting fractions and mixed numbers with unlike denominators

Snapshot Assessment 5.NF.1 - Do problem 4 only, Howard County Assessments for 5.NF.1 and 5.NF. 2

SBAC Released Item:

Example Stem: Which expression is equivalent to $2-\frac{1}{3}+\frac{2}{5}$?
A. $\frac{2}{15}-\frac{1}{15}+\frac{2}{15}$
C. $\frac{17}{15}-\frac{7}{15}+\frac{8}{15}$
B. $\frac{2}{15}-\frac{5}{15}+\frac{6}{15}$
D. $\frac{30}{15}-\frac{5}{15}+\frac{6}{15}$

| 5.NF.1 | D | Further Applications
 Lesson 13:
 Use fraction benchmark numbers to assess reasonableness of addition and
 subtraction equations. | Days: $\mathbf{0}$
 Lesson 14:
 Strategize to solve multi-term problems.
 Lesson 15:
 Solve multi-step word problems; assess reasonableness of solutions using
 benchmark numbers. |
| :--- | :---: | :--- | :--- | :--- |
| Lesson 16: | Explore part to whole relationships. | Lessons 13-16 are extensions
 because students have to
 explain their reasoning more
 in-depth. | |

2 Days for Re-Assessment and Problem Solving Tasks

End of Module Assessment Word Document

SBAC Released Items to Use for Problem Solving:

Example Stem: Sara has $1 \frac{3}{4}$ feet of cloth. She used $\frac{1}{3}$ foot to make a bow. Which expression could be used to correctly determine the amount of cloth, in feet, that remains?
A. $1-\frac{3}{12}-\frac{1}{12}$
B. $1-\frac{9}{12}-\frac{4}{12}$
C. $1+\frac{3}{12}-\frac{1}{12}$
D. $1+\frac{9}{12}-\frac{4}{12}$

(cc) EY-NC

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Example Item 1 (Grade 5):

Primary Target 4C (Content Domain NF), Secondary Target 1F (CCSS 5.NF.1)

Oliver's family planted a tree on his 1st birthday. Each year the tree grows about the same amount. Oliver's family has measured the height of the tree every year on his birthday, except they forgot to record its height on his 5th birthday.

Oliver's Birthday	1st	2nd	3rd	4 th	5 th	6 th
Height of Tree (ft)	$\frac{5}{12}$	$1 \frac{1}{2}$	$3 \frac{1}{4}$	$4 \frac{2}{3}$	$?$	$7 \frac{7}{12}$

Which measurement is the most reasonable estimate for the height of the tree on Oliver's 5th birthday?
A. $5 \frac{1}{12} \mathrm{ft}$
B. $5 \frac{3}{8} \mathrm{ft}$
C. $6 \frac{1}{6} \mathrm{ft}$
D. $6 \frac{11}{12} \mathrm{ft}$

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Example Item 3 (Grade 5):

Primary Target 3A (Content Domain NF), Secondary Target 1E (CCSS 5.NF.2), Tertiary Target 3F
Julie is working on this subtraction problem: $3 \frac{1}{4}-2 \frac{1}{2}$. She uses addition as a strategy for finding the difference.

Use the same reasoning as Julie to complete the statement that describes how to get the answer to this subtraction problem: $5 \frac{1}{2}-4 \frac{2}{4}$.
Choose the numbers from the palette to complete the statement. Numbers may be used more than once.
"If I add ___ to ___, then I get \qquad I need \qquad add \qquad more to get up to \qquad So the answer to the
ubtraction problem is \qquad $+$, which is \qquad辟

Rubric: (2 points) The student correctly places all 8 numbers. Some numbers are interchangeable (e.g., $\frac{1}{4}$,
$4 \frac{3}{4}, 5, \frac{1}{3}, 5 \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \frac{7}{12}$ or $\left.4 \frac{3}{4}, \frac{1}{4}, 5, \frac{1}{3}, 5 \frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \frac{7}{12}\right)$.
(1 point) The student is able to either determine the correct answer ($\frac{7}{12}$) without correctly completing the reasoning, or can complete the reasoning correctly but not the final answer.
Interaction: The student drags the following numbers from the multi-use palette: $\frac{1}{4} ; \frac{1}{3} ; \frac{5}{12} ; \frac{1}{2} ; \frac{3}{12} ; \frac{2}{3} ; \frac{3}{4}$;
1; 4; $4 \frac{3}{4} ; 5$; $5 \frac{1}{3}$.

Links Used:
Module Assessments: https://www.engageny.org/resource/grade-5-mathematics-module-3

(cc) EY-NC

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Optional Lesson
Extension Lesson
Remedial Lesson

Standards	Topic and Objectives		
5.MD. 2	A	Line Plots of Fraction Measurements Lesson 1: Measure and compare pencil lengths to the nearest $1 / 2,1 / 4$, and $1 / 8$ of an inch, and analyze the data through line plots.	Days: 0 Optional Lesson 1, 5.MD. 2 is not a priority standard and this reviews $3^{\text {rd }}$ and $4^{\text {th }}$ grade line plots.
5.NF. 3	B	Fractions as Division Lessons 2: Interpret a fraction as division. Lessons 3: Interpret a fraction as division. Lesson 4: Use tape diagrams to model fractions as division. 1 Day Module 1 Lesson 16: Review Word Problems Lesson 5: Solve word problems involving the division of whole numbers with answers in the form of fractions or whole numbers.	Days: 4 Optional Lesson 3, the concept is thoroughly covered in Lessons 2 and 4. Between Lessons 4 and 5, do Lesson 16 from Module 1 to review word problems with decimal operations.

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic B, your students should be able to:

- Interpret a fraction as division
- Use tape diagrams to model fractions as division
- Solve word problems involving the division of whole numbers with answers in the form of fractions

Snapshot Assessment 5.NF. 3 - do all problems

SBAC Released Items (see next page)
Example Stem: An art teacher divided 22 ounces of beads equally among 6 groups of students.

How many ounces of beads did each group receive?

Example Stem: Which expression is equal to $\frac{3}{4}$?
A. 3×4
B. 4×3
C. $4 \div 3$
D. $3 \div 4$
A. $\frac{1}{16}$ ounce
B. $\frac{1}{28}$ ounce
C. $\frac{6}{22}$ ounce
D. $\frac{22}{6}$ ounces

5.NF.4a	C	Multiplication of a Whole Number by a Fraction

Lesson 6: Relate fractions as division to fraction of a set.
Lesson 7: Multiply any whole number by a fraction using tape diagrams.
Lesson 8: Relate fraction of a set to the repeated addition interpretation of fraction multiplication.

Lesson 9: Find a fraction of a measurement, and solve word problems.

Days: 3
Lesson 9 would be a good extension or spiral review of measurement conversions.

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic C, your students should be able to:

- Multiply a fraction or a whole number by a fraction
- Use tape diagrams to multiply a fraction by a whole number

Snapshot Assessment 5.NF.4a-do problems 1 and 2 only

SBAC Released Item (see next page):
Example Stem: Which fraction model best represents
$4 \times \frac{2}{3}$?

A. | $\boxed{ }$ | $\boxed{ }$ |
| :--- | :--- |

B.

C.

D.

Rubric: (1 point) The student identifies the correct fraction
model for the given multiplication problem (e.g., C).

5.OA. 1
5.OA. 2
5.NF.4a
5.NF. 6

D Fraction Expressions and Word Problems
Days: 3
5.OA. 2
5.NF.4a
5.NF. 6

Lesson 10: Compare and evaluate expressions with parentheses.
Lesson 11-12: Solve and create fraction word problems involving addition, subtraction, and multiplication.

(cc) EY-NC

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic D, your students should be able to:

- Use order of operations to evaluate expressions
- Create and solve fraction word problems

Snapshot Assessment 5.NF.4a - do problem 3 only

 Howard County - Task 5 5.NF. 4 from Howard County, Howard County - Task 6 - also assesses 5.NF. 6
SBAC Released Items:

Example Item 3 (Grade 5):
Primary Target 2C (Content Domain NF), Secondary Target $1 F$ (CCSS 5.NF.B)
Carl feeds his dog $2 \frac{1}{2}$ oups of dog food every day. Each bag contains 64 cups of dog food. What is the
maximum number of days that Carl can feed his dog exactly $2 \frac{1}{2}$ cups of dog food from one full bag?

Rubric: (1 point) The student is able to determine the maximum number of servings from one bag of food and interpret the remainder as not being enough for another serving (e.g., 25).

Response Type: Equation/Numeric

Example Item 1 (Grade 5):

Primary Target 3B (Content Domain NF), Secondary Target 1F (CCSS 5.NF.4a), Tertiary Target 3F

Look at the fraction model shown.

The shaded area represents $\frac{3}{2}$. Robert claims that the only way to model $3 \times \frac{2}{2}$ using rectangles A, B, C, and D is to use 3 of rectangle B. Drag redangles to the answer space to construct a model to show that Robert's claim is incorrect.
A
B

2 Days for Remediation, Enrichment, Mid-Module Assessment

Mid- Module Assessment Word Document

Suggested Tasks:

Time for Recess Performance Task: Covers 5.NF.3, 5.NF.4a, 5.NF.4b

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic E, your students should be able to:

- Multiply a fraction or a whole number by a fraction
- Solve multi-step word problems using tape diagrams
- Relate decimal and fraction multiplication

Snapshot Assessment for 5.NF.2, 5.NF.4, and 5.NF. 6 - use for re-assessments

SBAC Released Items

Example Stem: Cherrytown Park is in the shape of a rectangle.

- The width of the park is $\frac{1}{2}$ mile.
- The length of the park is $\frac{5}{6}$ mile.

Enter the area, in square inches, of the rectangle.

| 5.NF.5 |
| :--- | :---: | :--- | :--- | :--- |
| 5.NF.6 | F | Multiplication with Fractions and Decimals as Scaling and Word Problems |
| :--- |
| Lesson 21:Explain the size of the product, and relate fraction and decimal equivalence to
 multiplying a fraction by 1.
 Lessons 22-23: Compare the size of the product to the size of the factors. Use Lesson 21 sprint.
 Lesson 24: \quad Solve word problems using fraction and decimal multiplication. | | You can use Lessons 21 and |
| :--- |
| 24 as enrichment. |

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

By the end of Topic F, your students should be able to:

- Compare the size of the product to the size of the factors

Snapshot Assessment 5.NF.5- use all problems

SBAC Released Item:

Example Stem: Enter a positive value for b that makes this statement true: $5 \times b$ is greater than 5 but less than 10 .

Rubric: (1 point) The student enters a correct value in the given range (e.g., $\frac{1}{2} ; 1 \frac{1}{2}$).

$\begin{aligned} & \hline \text { 5.OA. } 1 \\ & \text { 5.NBT. } 7 \\ & \text { 5.NF. } 7 \end{aligned}$	G	Division of Fractions and Decimal Fractions		$\text { Days: } 5$ Lessons 30 and 31 can be used for enrichment but are not required for this standard.
		Lesson 25:	Divide a whole number by a unit fraction.	
		Lesson 26:	Divide a unit fraction by a whole number.	
		Lesson 27:	Solve problems involving fraction division.	
		Lesson 28:	Write equations and word problems corresponding to tape and number line diagrams.	
		Lessons 29:	Connect division by a unit fraction to division by 1 tenth and 1 hundredth. Use Lesson 30 sprint.	
		Lessons 30-31:	: Divide decimal dividends by non-unit decimal divisors.	

By the end of Topic G, your students should be able to:

- Divide whole numbers and fractions by whole numbers and fractions
- Solve and write word problems involving fraction division and tape diagrams

Snapshot Assessment 5.NF.7- do all 4 problems

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

$\begin{aligned} & \text { 5.OA. } 1 \\ & \text { 5.0A. } \end{aligned}$	H	Interpretation of Numerical Expressions Lesson 32: Interpret and evaluate numerical expressions including the language of scaling and fraction division. Lesson 33: Create story contexts for numerical expressions and tape diagrams, and solve word problems.			Days:
					Lesson 32 could be used as enrichment because of the language of scaling. In Lesson 33, remove \#6 from the problem set.
By the end of Topic H, your students should be able to: - Create a story problem for numerical expressions and tape diagrams - Solve word problems SBAC Released Items: Example Stem: Julie bikes $6 \frac{2}{3}$ miles al ong the river trail on Example Stem: Ryan has $\frac{1}{2}$ pound of chocolate. He divides it Saturday. Greg swims $\frac{3}{4}$ of that distanœ. Enter the distance, in into 4 equal portions. miles, that Greg swims. Enter the amount of chocolate, in pounds, in each portion.					
3 Days for Re-Assessment, Remediation and Enrichment In End of Module Assessment, remove \#2e, 2f, and 3c Suggested Performance Tasks: - The Wishing Club (pg. 61) - Party Time					

Links Used:
Module Assessments: https://www.engageny.org/resource/grade-5-mathematics-module-4
Time for Recess Task: http://schools.nyc.gov/NR/rdonlyres/B8B8BDAD-2EF2-4BF8-AE93-
114C48B563E2/130938/NYCDOEG5Math TimeforRecess Final.pdf

(cc) EY-NG

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.
"Water, Water" Task, page 24: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5-Math-Unit-6.pdf
Cindy's Cats Task: http://www.insidemathematics.org/assets/common-core-math-tasks/cindy's\ cats.pdf
The Wishing Club Task, page 61: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5th-Math-Unit-4.pdf
Party Time Task: http://www.insidemathematics.org/assets/problems-of-the-month/party\ time.pdf

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Standards	Topic and Objectives				
5.MD.3	A	Concepts of Volume Launch for volume: $\underline{\text { Minecraft Volume Video }}$ Lesson 1: Explore volume by building with and counting unit cubes. Lesson 2: Lesson 3:	Find the volume of a right rectangular prism by packing with cubic units and counting. Compose and decompose right rectangular prisms using layers.		Days: $\mathbf{3}$
:---					
Use as a launch for volume:					
Minecraft Volume Video					

By the end of Topic A, your students should be able to:

- Build volume with unit cubes and count unit cubes to find volume of right rectangular prisms
- Identify the different ways to break up a right rectangular prism into layers

SBAC Released Items: 5.MD.3, 5.MD. 4
Example Stem: The layers of a rectangular prism are shown to
the right of the prism

Enter the volume, in cubic centimeters, of the rectangular prism.

Example Stem: The rectangular prism shown is solid.

Enter the volume, in cubic centimeters, of the rectangular prism.

Example Stem: Elias is building a rectangular prism. The bottom layer of the rectangular prism is shown.

He builds a prism that has 4 layers. Enter the volume, in cubic centimeters, of the completed rectangular prism

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

$\begin{aligned} & \text { 5.MD. } 3 \\ & \text { 5.MD. } 5 \end{aligned}$	B	Volume and the Operations of Multiplication and Addition Lesson 4: Use multiplication to calculate volume. Lesson 5: Use multiplication to connect volume as packing with volume as filling. Lesson 6: Find the total volume of solid figures composed of two non-overlapping rectangular prisms. Lesson 7: \quad Solve word problems involving the volume of rectangular prisms with whole number edge lengths. Lessons 8-9: Apply concepts and formulas of volume to design a sculpture using rectangular prisms within given parameters. Use 3 Days for Lessons 8 and 9 1 Day Math Task: Cari's Aquarium	Days: 8 For Lessons 8 and 9, use three days instead of two. This is a very involved project that applies concepts and formulas and volume to design a sculpture.
By the end of Topic B, your students should be able to: - Use multiplication to calculate volume and solve word problems of volume with whole number dimensions			
SBAC Released Items: Example Stem: Danny has a fish tank, in the shape of a right rectangular prism. The edge lengths of the prism, in inches, are 8,13 , and 20.			
Enter the		inches, of the fish tank.	

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Example Stem: The right rectangular prism shown has a length 6 centimeters, width 3 centimeters, and height 4 centimeters.

Determine whether each equation can be used to find the volume (V) of this prism. Select Yes or No for each equation.

	Yes	No
$V=18 \times 4$		
$V=(6+3) \times 4$		
$V=6 \times 3 \times 4$		
$V=9 \times 4$		
$V=6 \times(3 \times 4)$		

Example Stem: Sally uses Block A and Block B to create this model of a building.

- The dimensions of Block A are 3 by 3 by 5 inches.
- The dimensions of Block B are 1 by 3 by 4 inches.

Enter the combined volume, in oubic inches, of the entire model.

The figure shown was created by joining two rectangular prisms.

What is the total volume, in cubic inches, of the figure?
Enter your answer in the response box.

Example Item 1 (Grade 5):
Primary Target 2D (Content Domain MD), Secondary Target 11 (CCSS 5.MD.5b)
Tonya must completely fill a shipping box with as many packages as possible. Each package measures 1 inch by 2 inches by 1 inch. The shipping box she must use measures 4 inches by 8 inches by 4 inches.

What is the greatest number of packages that can fit into the shipping box?
Enter your answer in the response box.

Rubric: (1 point) The student enters the number of packages that can fit into the box (e.g., 64).

(cc) $\mathrm{EY}-\mathrm{Nc}$

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

2 Days for Remediation, Enrichment, Mid-Module Assessment

Suggested Tasks: How Many Ways? Georgia Math, page 59, uses 5.MD.3-5

5.NF.4b \quad C \quad Area of Rectangular Figures with Fractional Side Lengths

Days: 6

5.NF. 6

Lesson 10: Find the area of rectangles with whole-by-mixed and whole-by-fractional number side lengths by tiling, record by drawing, and relate to fraction multiplication.
Lesson 11: Find the area of rectangles with mixed-by-mixed and fraction-by-fraction side lengths by tiling, record by drawing, and relate to fraction multiplication.
Lesson 12: Measure to find the area of rectangles with fractional side lengths.
Lessons 13: Multiply mixed number factors, and relate to the distributive property and the area model.

Lessons 14-15: Solve real world problems involving area of figures with fractional side lengths using visual models and/or equations.
By the end of Topic C, your students should be able to:

- Find the area of rectangles with whole number, fractional number, and mixed number sides
- Solve real world problems involving area with fractional side lengths
- Multiply mixed number factors to find area

SBAC Released Item for 5.NF.4b and 5.NF. 6

Example Stem: Use this rectangle to solve the problem.
Example Stem: Cherrytown Park is in the shape of a

Enter the area, in square inches, of the rectangle.
rectangle.

- The width of the park is $\frac{1}{2}$ mile.
- The length of the park is $\frac{5}{6}$ mile.

Enter the area, in square miles, of Cherrytown Park.

[^1]5.G. 3 D Drawing, Analysis, and Classification of Two-Dimensional Shapes
5.G. 4
\[

\left.$$
\begin{array}{l}
\text { Lesson 16: }
\end{array}
$$ $$
\begin{array}{l}
\text { Draw trapezoids to clarify their attributes, and define trapezoids based on those } \\
\text { attributes. }
\end{array}
$$ \quad $$
\begin{array}{l}
\text { Draw parallelograms to clarify their attributes, and define parallelograms based } \\
\text { on those attributes. }
\end{array}
$$\right\} $$
\begin{aligned}
& \text { Lesson rectangles and rhombuses to clarify their attributes, and define rectangles } \\
& \text { Lesp rhombuses based on those attributes. }
\end{aligned}
$$
\]

Days: 5

Remedial Lesson 21, it is a "guess my shape" game for further practice classifying.

By the end of Topic D, your students should be able to:

- Draw, analyze, and classify two-dimensional shapes

SBAC Released Item for 5.G.3 and 5.G.4:

Determine whether each polygon shown is also a parallelogram. Select Yes or No for each polygon.

Example Stem 2: Determine whether each polygon is a rhombus and/or a quadrilateral. Select all boxes that apply next to each polygon. If the polygon is not a rhombus or a quadrilateral, select Neither

	Rhombus	Quadrilateral	Neither
Rectangle			
\square			
Square			

Rubric: (1 point) The student correctly selects all boxes that apply with no incorrect boxes selected (e.g., N, N, Y, N, N; Rectangle: Quadrilateral; Square: Rhombus, Quadrilateral; Parallelogram: Quadrilateral).

3 Days for Re-Assessment, Remediation and Enrichment

EY-NG

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Module Assessment Word Documents

Suggested Tasks: Toy Box Design Georgia Math, page 85, 5.MD 3-5
Links Used:
Module Assessments: https://www.engageny.org/resource/grade-5-mathematics-module-5
"Cari's Aquarium" Task: https://www.illustrativemathematics.org/content-standards/tasks/1308
"How Many Ways?" Task, page 59: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5-Math-Unit-6.pdf\
"Toy Box Design" Task, page 85: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5-Math-Unit-6.pdf

Optional Lesson
Extension Lesson
Remedial Lesson

Standards		Topic and Objectives	
5.G.1	A	Coordinate Systems Introduce Coordinate Systems with Whole Numbers using Georgia Grade 5, pg12 - Shoo-Fly (1 day) - will need the book Fly on the Ceiling by Julie Glass Lesson 1: Construct a coordinate system on a line. Lesson 2: \quad Construct a coordinate system on a plane. Lesson 3: Name points using coordinate pairs, and use the coordinate pairs to plot points. Lesson 4: Name points using coordinate pairs, and use the coordinate pairs to plot points. Lesson 5: Investigate patterns in vertical and horizontal lines, and interpret points on the plane as distances from the axes. Georgia Grade 5, pg 20 Air Traffic Controller (1 day) Lesson 6: Investigate patterns in vertical and horizontal lines, and interpret points on the plane as distances from the axes.	Days: 6 Do the Georgia Math game "Shoo-Fly" to introduce coordinate systems before starting the EngageNY lessons. Remedial Lesson 1, it is a review of a number line. Do the "Air Traffic Controller" game after Lesson 5. You will need shower curtain liners for the game. Extension Lesson 6, it goes beyond the fifth grade standard.
By the end - Con - Wri - Nam - Iden SBAC Releas		ic A, your students should be able to: a coordinate system on a plane with fractional coordinates ordinate as (\qquad) , ___) interpret points on a plane " and " y " axes (see next page):	

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

		Video Examples: Input and Output Table , Intro to Ratios (create a free account to watch this video) Students must be able to generate rules from a graphed equation, coordinate pairs and tables. For example if given a table, they must be able to say, "The rule for x is add 3 and the rule for y is multiply by 2 " The following examples are things that they may be asked to do on the SmarterBalanced assessment: - Evaluate the relationship between variables in a coordinate plane - \quad Plot points based on rules for X and $Y(x, y)$ - Identify the nth term in a sequence - Identify or create coordinate pairs based on rules On the following two pages, you will find examples of released items. It is important for students to see the connection to real world context in these to make sense of the rules.	Lessons 10-12 are extensions because they go beyond the fifth grade standards.
By the end of Topic B, your students should be able to: - Describe patterns with coordinate pairs - Generate a number pattern from a given rule and plot the points - Create a rule to generate a number pattern and plot the points - Analyze number patterns created from mixed operations SBAC Released Items (see next page):			

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

The four figures shown represent a sequence.
Figure 1

Figure 4

How many squares are needed to make Figure 5 if this sequence of figures continues?

Figure	Number of Squares
1	1
2	3
3	6
4	10
5	$?$

Enter your answer for Figure 5 in the first response box.
Figure 40 in this sequence contains 820 squares. How many squares are needed to make Figure 41 ? Enter your answer for Figure 41 in the second response box.

Rubric: (1 point) The student selects the correct set of ordered pairs (e.g., A).
Example Stem: Patterns P and Q are generated using these rules.

- Pattern P: Start with 0 and add 1.
- Pattern Q: Start with 0 and add $\frac{1}{4}$.

Which set of ordered pairs is generated from corresponding terms of Pattern P and Pattern Q ?
A. $(0,0),\left(1, \frac{1}{4}\right),\left(2, \frac{1}{2}\right),\left(3, \frac{3}{4}\right)$
B. $\left(1, \frac{1}{4}\right),\left(1, \frac{1}{2}\right),\left(1, \frac{3}{4}\right),(1,1)$
C. $(0,0),(1,2),(2,3),(3,4)$
D. $\left(\frac{1}{4^{\prime}} \frac{1}{2}\right),\left(\frac{1}{2^{\prime}} \frac{3}{4}\right),\left(\frac{3}{4^{\prime}}, 1\right),\left(1 \frac{1}{4}, 1 \frac{1}{2}\right)$

Example Stem: Patterns X and Y are generated using these rules.

- Pattern X: Start with 5 and add 5 .
- Pattern Y: Start with 1 and add 2 .

Graph three points to represent the ordered pairs formed by the first three corresponding terms in Pattern X and Pattern Y.

Rubric: (1 point) The student selects the correct description of
the relationship (e.g., C).
Example Stem: Patterns A and B are generated using these rules.

- Pattern A: Start with 10 and add 5.
- Pattern B: Start with 2 and add 1.

Which statement best describes the relationship between the corresponding terms of Pattern A and Pattern B ?
A. Each term in Pattern A is $\frac{1}{5}$ of the value of the corresponding term in Pattern B.
B. Each term in Pattern A is 4 more than the value of the corresponding term in Pattern B.
C. Each term in Pattern A is 5 times the value of the corresponding term in Pattern B.
D. Each term in Pattern A is 8 more than the value of the corresponding term in Pattern B.

(cc) EY-NC

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

1 Day for Remediation and/or Enrichment
 Do not use the Mid-Module Assessment

$\begin{aligned} & \text { 5.G. } 1 \\ & \text { 5.G. } 2 \end{aligned}$	C	Drawing Figures in the Coordinate Plane	Days: 1 (for Snapshot Assessment) Lessons 13-17 are enrichment because they go beyond the fifth grade standards.
$\begin{aligned} & \text { 5.OA. } 3 \\ & \text { 5.G. } 2 \end{aligned}$	D	Problem Solving in the Coordinate Plane Lesson 18: Draw symmetric figures on the coordinate plane. Problem Solving Task: Granny's Balloon Trip (1 day) Lesson 19: Plot data on line graphs and analyze trends. Use Lesson 29 sprint. Lesson 20: Use coordinate systems to solve real world problems. Use Lesson 33 sprint. Georgia Unit 5: What's the Better Buy? (1 day)	Days: 4 Lesson 18 is enrichment because it goes beyond the fifth grade standard.
By the end of Topic D, your students should be able to: - Plot data on line graphs - Analyze trends on a line graph - Use coordinate systems to solve real world problems			
1 Day for Remediation and Enrichment- Do Not Use End of Module Assessment			
5.NF. 2 5.NF. 3 5.NF. 6 5.NF.7c 5.MD. 1 5.MD. 5 5.G. 2	E	Multi-Step Word Problems Lessons 21-25: Make sense of complex, multi-step problems and persevere in solving them. Share and critique peer solutions.	Days: 5 Use Visual Patterns for practice generating rules for visual patterns, further practicing content of this module.

(cc) EY-NC

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

Review only.

F	The Years in Review: A Reflection on A Story of Units	Days: 2 to 3
	Lessons 26-27: Solidify writing and interpreting numerical expressions.	
	Lesson 28: Solidify fluency with Grade 5 skills.	Use Lessons 26-34
	Lessons 29-30: Solidify the vocabulary of geometry.	as needed.
	Lesson 31: Explore the Fibonacci sequence.	
	Lesson 32: Explore patterns in saving money.	
	Lessons 33-34: Design and construct boxes to house materials for summer use.	

Review only.

Links Used:
"Shoo Fly" Task, page 12; "Air Traffic Controller" Task, pg 20; "Earth Day Project" Task, pg 32; "First to Arrive" Task, pg 40: https://www.georgiastandards.org/Georgia-Standards/Frameworks/5th-Math-Unit-7.pdf
"Granny's Balloon Trip" Task: http://www.insidemathematics.org/assets/common-core-math-
tasks/granny's\%20balloon\%20trip.pdf
"What's the Better Deal?" Task, page 43: http://www.insidemathematics.org/assets/common-core-mathtasks/granny's\ balloon\ trip.pdf

Visual Patterns Resource: http://www.visualpatterns.org/

Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

[^0]: (cc) EY-NC

 Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

[^1]: (cc) $\mathrm{EY}^{2}-\mathrm{NC}$

 Pacing Guides by FWPS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 Based on a work at www.engageny.org, www.smarterbalanced.org and the CCSS Progression Documents.

