Grade 5 Smarter Balanced Assessment Item Specifications Fact Sheet **Claim 1 - Target F:** Apply and extend previous understandings of multiplication and division to multiply and divide fractions. Content Domain: Numbers and Operations - Fractions Claim 1 Priority Cluster ### **Standards Assessed in Target F:** - **5.NF.3:** Interpret a fraction as division of the numerator by the denominator $(a/b = a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? - **5.NF.4:** Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. - **a.** Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation. Do the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times (c/d) = ac/bd$.) - **b.** Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. - **5.NF.5:** Interpret multiplication as scaling (resizing), by: - **a.** Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. - **b.** Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect of multiplying a/b by 1. - **5.NF.6:** Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. - **5.NF.7:** Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. - **a.** Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$. - **b.** Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) = 20$ because $20 \times (1/5) = 4$. - **c.** Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? # **Achievement Level Descriptors** | Level 1 | Students should be able to apply their previous understandings of multiplication to multiply a fraction by a fraction; know the effect that whole number multiplication has on fractions; use or create visual models when multiplying a whole number by a fraction between 0 and 1; and interpret and perform division of a whole number by 1/2 or 1/3. | |---------|---| | Level 2 | Students should be able to multiply a whole number by a mixed number; know the effect that a fraction greater than or less than 1 has on a whole number when multiplied; use or create visual models when multiplying two fractions between 0 and 1; extend their previous understandings of division to divide a unit fraction by a whole number; and understand that division of whole numbers can result in fractions. | | Level 3 | Students should be able to multiply a mixed number by a mixed number; know the effect that a fraction has on another fraction when multiplied (proper and improper fractions); use or create visual models when multiplying two fractions, including when one fraction is larger than 1; and interpret and perform division of any unit fraction by a whole number. | | Level 4 | Students should be able to understand and use the fact that a fraction multiplied by 1 in the form of a/a is equivalent to the original fraction. | ### **Construct-Relevant Vocabulary** denominator, difference, equivalent, fraction, mixed number, numerator, product, sum ## **Allowable Stimulus Materials** visual fraction models (circles, rectangles, tape diagrams, number lines)